Journal of Organometallic Chemistry, 120 (1976) C16-C17 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

THE REDOX PROPERTIES OF ORGANOTRANSITION-METAL COMPLEXES

IV*. THE ACTIVATION OF CYCLIC POLYOLEFINIRON TRICARBONYL DERIVATIVES BY ONE-ELECTRON OXIDATION

NEIL G. CONNELLY* and RAYMOND L. KELLY

Department of Inorganic Chemistry, The University, Bristol, BS8 1TS (Great Britain)

(Received August 2nd, 1976)

Summary

Cyclic polyolefiniron tricarbonyl derivatives $[Fe(CO)_2L(C_nH_m)]$ (L = CO or phosphorus donor) and oxidising agents such as Ag⁺ or $[NO]^+$ in CH₂Cl₂ give reactive paramagnetic cations $[Fe(CO)_2L(C_nH_m)]^+$ which can abstract hydrogen from the solvent to give $[Fe(CO)_2L(C_nH_m+1)]^+$.

Cyclic polyolefiniron tricarbonyl complexes (I) may undergo reaction at the coordinated organic ligand either by direct addition of reagents such as tetracyanoethylene [2], or via protonation or hydride abstraction followed by nucleophilic attack on the resulting cation [3]. We now show that I may also be activated via initial one-electron oxidation.

The addition of [NO] X (X = BF₄ or PF₆ to [Fe(CO)₂ L(C_nH_m)] (I) (C_nH_m = cyclic polyolefin) in dry CH₂ Cl₂ gives either [Fe(CO)L(NO)(C_nH_m)]⁺ (II) (L = CO, C_nH_m = norbornadiene; L = PPh₃, C_nH_m = tetraphenylcyclobutadiene) or [Fe(CO)₂ L(C_nH_{m+1})]⁺ (III) in which protonation has apparently occurred (e.g. [Fe(CO)₃ (η^5 -cycloheptadienyl)] [BF₄] (IV) from [Fe(CO)₃ (η^4 cycloheptatriene)] (V)). Although protonations involving [NO]⁺ have been observed [4] with alcoholic solvents, in which the equilibrium [NO]⁺ + ROH \approx H⁺ + RONO occurs, the presence of protons in mixtures of [NO] X and dry CH₂ Cl₂ is unlikely. The possibility that the nitrosonium ion oxidises [5] (I) to [Fe(CO)₂ L(C_nH_m)]⁺ (VI) which then abstracts hydrogen from CH₂ Cl₂ to give III has been confirmed by electrochemical studies and additional synthetic work.

Cyclic voltammetric studies (Table 1) in $CH_2 Cl_2$ show that the complexes

^{*}For part III see ref. 1.

^{**}To whom correspondence should be addressed.

TABLE 1

CYCLIC COLTAMMETRIC DATA FOR THE ONE-ELECTRON OXIDATION OF [Fe(CO)2 L(olefin)] (I)

L	Olefin	Ep(V) ^a	(ip) _{OX} (μA) ^b	$(ip)_{RED} (\mu A)^b$	Reversibility ^c
PPh ₃	Norbornadiene	0.22	3.7	3.4	R
PPh ₃	Tetraphenylcyclo- butadiene	0.61	3.3	3.2	R
PPh,	Cyclooctatetraene	0.47	4.0	<u> </u>	IR
P(OCH,), CMe	Cyclooctatetraene	0.50	4.2	<u> </u>	IR
$P(OCH_2)_3 CMe$	Cycloheptatriene	0.50	6.1	—	IR

^a For the irreversible processes (*Ep*)_{OX} is given, measured at a scan rate of 100 mV/s; all potentials are vs. a calomel 1 *M* in LiCL

b For the known reversible process [Ni $S_2C_2(CN)_{2}$]² \Rightarrow [Ni $S_2C_2(CN)_2$]¹ (*ip*)_{OX} = 3.5 μ A, (*ip*)_{RED} = 3.8 μ A.

^c R = reversible, IR = chemical irreversible.

I (L = phosphine or phosphite) each undergo one-electron oxidation at the platinum wire electrode^{*}. For those complexes which afford metal nitrosyls (II with [NO] X) the electron-transfer process is reversible and addition of Ag[PF₆] to solutions of these species in CH₂ Cl₂ results in the formation of stable paramagnetic cations (Fe(CO)₂ L(C_nH_m)]⁺ (VI) [e.g. L = PPh₃, C_nH_m = η^4 -C₄Ph₄, ν (CO) (CH₂ Cl₂) 2033, 2003 cm⁻¹; $\langle g_{ave} \rangle = 2.080$). For all other examples of I studied the oxidation is chemically irreversible, the initial one-electron transfer step is followed by a rapid chemical reaction. The addition of Ag⁺ to those species (L = phosphine or phosphite) which are irreversibly oxidised gives products identical to those obtained from reaction with [NO]⁺. In certain cases where L = CO only the stronger oxidising agent, [NO]⁺ will bring about the initial electron transfer. Thus, although good yields of IV may be obtained from V and Ag[BF₄], the latter will only react with I (L = PPh₃, C_nH_m = cyclooctatetraene), not with I (L = CO, C_nH_m = cyclooctatetraene).

It is clear, therefore, that not only does the formation of III from I with [NO]⁺ not involve the direct addition of protons but that suitable oxidising agents may be used to activate I via initial one-electron transfer. Subsequent reaction of VI depends on the availability on the olefin of a site at which attack by other reagents can occur.

Acknowledgements

We thank the S.R.C. for a Research Studentship (to R.L.K.).

References

- 1 N.G. Connelly and K.R. Somers, J. Organometal. Chem., 113 (1976) C39.
- 2 M. Green, S. Heathcock and D.C. Wood, J. Chem. Soc. Dalton, (1973) 1564.
- 3 E.W. Abel and F.G.A. Stone, Quart. Revs., 24 (1970) 515 and refs. therein.
- 4 N.G. Connelly and J.D. Davies, J. Organometal. Chem., 38 (1972) 385; B.F.G. Johnson and J.A. Segal, J. Organometal. Chem., 31 (1971) C79; J.A. Connor and P.I. Riley, J. Chem. Soc. Chem. Commun., (1976) 149.
- 5 N.G. Connelly, Z. Demidowicz and R.L. Kelly, J. Chem. Soc. Dalton, (1974) 2335.

^{*}The tricarbonyls are oxidised at more positive potentials; the phosphine and phosphite complexes lend themselves more readily to electrochemical study.